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Abstract. We consider a system with randomly layered ferromagnetic bonds (McCoy–Wu
model) and study its critical properties in the frame of mean-field theory. In the low-temperature
phase there is an average spontaneous magnetization in the system, which vanishes as a power
law at the critical point with the critical exponentsβ ≈ 3.6 andβ1 ≈ 4.1 in the bulk and at
the surface of the system, respectively. The singularity of the specific heat is characterized by
an exponentα ≈ −3.1. The samples reduced critical temperaturetc = T av

c − Tc has a power
law distributionP(tc) ∼ tωc and we show that the difference between the values of the critical
exponents in the pure and in the random system is justω ≈ 3.1. Above the critical temperature
the thermodynamic quantities behave analytically, thus the system does not exhibit Griffiths
singularities.

1. Introduction

More than 25 years ago McCoy and Wu [1] introduced and partially solved a randomly
layered Ising model on the square lattice. In the model, the nearest-neighbour vertical
couplingsK are the same, whereas the horizontal couplingsJi are identical within each
column, but vary from column to column, such that they are taken independently from a
distributionρ(J ) dJ . Recently, the solution of the McCoy–Wu (MW) model and the related
random transverse-field Ising spin chain have been substantially extended by renormalization
group [2] and numerical [3–6] studies. Exact values for the average bulkβ and surfaceβ1

magnetization exponents and theν correlation length exponent are given by

β = 3−√5

2
β1 = 1 and ν = 2 (1)

which all differ from the corresponding values in the pure system. We note that several
physical quantities of the MW model are not self-averaging at the critical point, consequently
their typical and average values are different. A further curiosity of the MW model lies
within the existence of Griffiths–McCoy singularities [7, 8] at both sides of the critical point,
where the vertical spin–spin correlations decay as a power law with temperature-dependent
decay exponents and, consequently, the susceptibility is divergent in a whole region.
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The MW model, or more precisely its quantum version, has been generalized for
higher dimensions; namely quantum spin glasses in two and three space dimensions [9],
the corresponding mean-field theory [10], diluted transverse Ising ferromagnets in higher
dimensions [11] and random bond Ising ferromagnets ind = 2 [12]. In all of these models,
disorder is uncorrelated in thed space dimensions and perfectly correlated in the additional
imaginary time direction. Various analytical techniques, known from classical spin glasses
[13], are at hand to treat the mean-field theory of other cases [10].

In this paper we consider a different type of generalization of the MW model tod > 2
dimensions. In our approach the variation in theJi couplings remains one-dimensional and
these couplings are identical in(d − 1)-dimensional columns, while couplings in the other
(d−1) directions are the same,K. We study the problem within mean-field theory, therefore
we refer to our system as the mean-field McCoy–Wu (MFMW) model. We mention that
inhomogeneous layered systems with quasiperiodic and smoothly varying interactions have
recently been studied in the frame of mean-field theory by similar methods [14, 15].

The paper is organized as follows. In section 2, we present the model and the numerical
technique which is used to obtain the order parameter profile. The critical exponents are
determined in section 3, while in section 4 an analysis of the critical temperature probability
distribution is presented. Finally, in section 5 we conclude with a relation between the values
of the critical exponents in both the pure and random systems.

2. Mean-field McCoy–Wu model

As mentioned in the introduction we consider ad-dimensional Ising model, which consists
of (d − 1)-dimensional layers, such that the Hamiltonian is given by

H = −
∑
i

∑
j

Jiσi,j σi+1,j −K
∑
i

∑
〈j,k〉

σi,j σi,k. (2)

Hereσi,j = ±1 andi = 1, 2, . . . , L characterizes the position of the layers, whereasj and
k give the position of the spin within a layer and〈j, k〉 are nearest neighbours. We treat
the Hamiltonian in (2) in mean-field theory, then the local magnetization in theith layer,
mi = 〈σi,j 〉 (see figure 1), is a subject of variation, if theJi couplings are inhomogeneous.
According to local mean-field theory the local magnetization satisfies the following set of
self-consistency equations:

mi = tanh

[
Ji−1mi−1+ 2(d − 1)Kmi + Jimi+1

T

]
(3)

for i = 1, 2, . . . , L and withm0 = mL+1 = 0.
Hereafter we use units withkB = 1. The self-consistency equations in (3) have to

be supplemented by boundary conditions. Here we apply symmetry breaking boundary
conditions, such that the spins in one surface layer (i = 1) are free, thusJ0 = 0, whereas in
the other surface layer (i = L) they are fixed to the same state, thusmL = 1. The advantage
of this type of boundary conditions is two-fold:

(i) one can study both the bulk and surface quantities at the same time; and
(ii) one can also investigate the profiles at and above the critical temperature.
As we have already mentioned theJi exchange couplings are quenched random

variables. It is generally assumed that the average behaviour of the physical quantities
does not depend on the details of the distribution of the couplings. In the following, we use
the symmetric binary distribution:

ρ(J ) = 1
2δ(J − λ)+ 1

2δ(J − λ−1) (4)
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Figure 1. d-dimensional layered mean-field model.

Figure 2. Averaged order-parameter profiles with free-fixed boundary conditions on a finite
system of widthL = 256 at different temperatures below and around the critical temperature
(T av

c = 4.223), forλ = 1.414. The insert shows a specific disorder realization belowT av
c .

furthermore, to reduce the number of parameters we take(d − 1)K = λ−1.
In this paper the MFMW model is studied numerically on finite slabs with relatively

large width (L 6 1024), such that for a given random realization of the couplings the
self-consistency equations in (3) are solved by the Newton–Raphson method. The resulting
magnetization profile is then averaged over several(∼ 105) samples.

According to the numerical results, the MFMW model exhibits two phases which are
separated by a critical point atT av

c . Above the critical temperature,T > T av
c , the average

bulk magnetization is zero and the magnetization profile ati = L drops to zero within the
range of the surface correlation lengthξ⊥ ∼ |T −T av

c |−ν , whereν denotes the corresponding
critical exponent. Below the critical temperature,T < T av

c , the average magnetization is
finite at any site of the system. As seen in figure 2 the average bulk magnetization [mb]av
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Figure 3. Temperature dependence of the average bulk and local surface magnetizations
(disorder amplitudeλ = 1.414). The corresponding log–log plots are shown in the insert,
where the broken curves correspond to a linear fit leading to approximate valuesβ ≈ 3.80 and
β1 ≈ 4.53.

corresponds to the value ofm in the plateau of the profile, which is different from the surface
magnetization, and [mb]av > [m1]av > 0. Again the width of the two surface regions, both
at i = 1 andi = L, are characterized by the corresponding correlation lengths.

3. Numerical determination of the critical exponents

The temperature dependence of the bulk and surface magnetization is shown in figure 3. As
seen in the figure both [mb]av and [m1]av vanish at the same temperature, thus we have the
so-calledordinary surface transition[16]. The magnetizations close to the critical point are
described by power laws in terms of the reduced temperaturet = T av

c −T as [mb]av(t) ∼ tβ
and [m1]av(t) ∼ tβ1, respectively. Indeed, as seen in the insert in figure 3 the magnetizations
versus reduced temperature in a log–log plot are asymptotically described by straight lines,
the slope of those are given by the corresponding magnetization exponents.

Having a closer look at figure 3 one can notice that the magnetization close to the
critical point exhibits log-periodic oscillations as a function oft [17]. The origin of these
oscillations is the existence of a finite energy scale in the binary distribution in (4), which is
connected to the difference between the two possible values of the couplingsλ andλ−1†. We
use these log-periodic oscillations to improve our estimates on the critical temperature and
on the critical exponents, at the same time. The resulting reduced magnetization [mb]avt

−β

versust is presented in figure 4 on a log–log plot, where we have taken optimized values
for β andT av

c . In this figure we used the critical temperature to obtain perfect oscillations,
whereas the correct value of the critical exponentβ is connected with a constant asymptotic
limit of [mb]avt

−β as t → 0.
The estimated critical temperatures, together with the bulk and surface magnetization

† Indeed there are no log-periodic oscillations, if the couplings follow uniform distribution, where no finite energy
scale can be defined.
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Figure 4. Rescaled average bulk magnetization atλ = 1.414 with log-periodic oscillations,
which are used to obtain refined estimates both on the critical temperature and on the critical
exponentβ.

Table 1. Numerical values of the critical temperature and the magnetic exponents for the surface
and bulk magnetizations.

λ T av
c β β1

1.414 4.223 3.78 4.43
2. 4.969 3.60 4.33
3.162 6.908 3.51 4.26

exponents are given in table 1 for different values of the parameterλ of the binary
distribution. As seen, the critical exponents do not depend on the strength of randomness
and they agree, within the error of the estimates, with each other:

β = 3.6(2) β1 = 4.2(2). (5)

We note that these exponents are unconventionally large, especially if we compare them with
the similar ones of the pure model. A largeβ exponent is connected with a fast variation of
the magnetization around the critical point and the critical region int , where the substantial
variation of [m]av(t) takes place, is then very narrow. Therefore in a numerical calculation
of the critical exponents one should closely approach the critical point, which in turn will
lead to an increase in the error of the estimation. This fact explains the not very high
accuracy of the numerical values in (5).

The same fact, the relatively large values of the magnetization exponents, have made
it very difficult to obtain a numerical estimate on the correlation length exponentν. In
principle it can be determined from the decay of the magnetization profile at the critical
point, which, according to the Fisher–de Gennes scaling theory [18] asymptotically behaves
as

[m(l)]av ∼ l−β/ν (6)

wherel = L− i. For the MFMW model, however, owing to the large value ofβ the decay
in (6) is very fast and the profile will become smaller than the noise before its asymptotic
regime is reached. Therefore we were not able to obtain a sensitive value forν.
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Figure 5. Temperature dependence of the internal energy and corresponding log–log plot in the
insert. The different curves correspond to different chain sizes (fromL = 32 to 256) and the
finite-size effects are quite small.

Next we consider the specific heat of the system, the critical behaviour of which is
deduced from the average internal energy:

[E]av = −
∑
i

[Jimi−1mi + 2(d − 1)Km2
i ]av (7)

asCv = 1
N

δ[E]av
δT

. As seen in figure 5 the specific heat at the critical point has a power-law
singularity and the corresponding critical exponent is obtained from the slope of the curve
in a log–log scale as:

α = −3.2(1). (8)

For the specific heat exponent, similarly to the magnetization exponents, we have made
use of the log-periodic nature of the oscillations to increase the accuracy of the estimates.
We note that the specific heat exponent in (8) is negative, thus it is decreased from its
pure valueαp = 0 and consequently, due to randomness the specific heat has become less
singular. The same observation was reported for a marginally aperiodic layered Ising model
in mean-field theory [14].

4. Probability distribution of the critical temperature

Having determined theaveragevalues of the physical quantities, which are accessible in a
measurement, we are now going to study their probability distributions. In this respect the
distribution of the samples critical temperatureTc is of primary importance. For a given
random realization of theJi couplings, the critical temperature is obtained from (3) in the
limit mi → 0. Then one proceeds by replacing in the r.h.s. of (3) the tanh(x) by x and
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Figure 6. Probability distribution of the critical temperature and its behaviour: (a) distribution
of the samples critical temperatures, (b) exponential fit of relative critical temperaturest (i) =
T max

c − Tc(i), (c) exponential fit of the corresponding weightP(i).

solve the linear eigenvalue problem

aT J1 0 . . . 0
J1 aT J2

0 J2 aT J3

J3 aT
. . .

...
...

. . .
. . . JL−2 0
JL−2 aT JL−1

0 . . . 0 JL−1 aT





m1

m2

m3
...

mL−2

mL−1

mL


= 0 (9)

for the critical temperatureTc, which is contained in the diagonal term, sinceaT =
2(d − 1)K − Tc.

The distribution of the samples critical temperatures is shown in figure 6(a) for the
parameterλ = 2 of the binary distribution (4), but a similar type of behaviour is found
for all other values ofλ. As seen in figure 6(a) the distribution consists of sharp peaks
the widths of those is much smaller than the distance between them. We shall number the
peaks byi = 0, 1, . . . in descending order from the maximal one and denote byTc(i) the
characteristic value of the critical temperature measured at the position of the tip of the
peak. Thus we haveTc(i = 0) = T max

c and t (i) = T max
c − Tc(i) measures the difference

from the maximal critical temperature. First we note that, within the error of the calculation,
the T max

c maximal critical temperature (corresponding to the pure system with maximum
coupling),T max

c = 2(λ+ λ−1), is equal to the average critical temperature

T max
c = T av

c (10)
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Figure 7. Power-law behaviour of the critical temperature distribution with respect to the
difference from the maximal critical temperature,ti , estimated at the successive peaks for
different values of the disorder amplitude:λ = 1.414 (×), λ = 2. (+), andλ = 3.162 (M). The
corresponding values ofω are given in the figure in the same order.

which has been determined before from the behaviour of the average magnetization and the
specific heat. We note thatT max

c in (10) corresponds to the so-calledGriffiths temperature
in random (Ising) spin systems, which is just the upper border of the Griffiths phase. In our
system the observation in (10), i.e.T max

c and the Griffiths temperature coincides, means that
there is no realization which exhibits finite bulk magnetization above the average critical
temperatureT av

c . As a consequence the average quantities, such as the susceptibility, behave
analytically above the critical temperature, thus there are no Griffiths singularities in the
system. We note that similar observation is found in random systems with long-range
interactions, where mean-field theory is exact [10].

In the following we study thet (i) = T max
c − Tc(i) relative critical temperatures and the

corresponding weightP(i) as a function of the index of the peak,i. As seen on figures
6(b) and (c) both quantities could be well fitted by exponential functions†:

t (i) ∼ exp(Ai) P (i) ∼ exp(Bi). (11)

TheA andB parameters in (11) are found to be approximately independent of the form of
the random distribution of the couplings and their ratio is given by

ω = B

A
= 3.1(1). (12)

Combining the two relations in (11) we obtain a power-law dependence of theP(ti) = P(i)
probability distribution:

P(ti) ∼ tωi (13)

with ω given in (12). This relation is indeed well satisfied, as can be seen in figure 7.

† A somewhat similar, exponential relation is present in the Sinai model [19] in a one-dimensional random walk
in a random environment, where theτ time- andL length-scales are related asτ ∼ exp(AL1/2). We can use
analogous language for the MFMW model, if we notice that the eigenvalue matrix in (9), which serves to determine
the samples critical temperature, is equivalent to the transfer matrix of a one-dimensional directed walk, if a step
of the walk on theith site is weighted by a fugacityJi . The relevant timescale of the problemτw is related to the
1 gap at the top of the spectrum of the transfer matrix, which is connected to the relative critical temperature of
the MFMW model as1 ∼ t1.
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5. Relation between pure and random system critical exponents

In the following we use the form of the probability distribution in (13) to relate the values
of the critical exponents of the pure and the random systems. Generally we consider a
physical quantityQ(t), which behaves in the homogeneous system

Q(t) ∼ t εp (14)

as a function of the reduced temperaturet = Tc − T , for |t | � 1. (In mean-field theory
for the bulk magnetizationεp = βp = 1

2, for the surface magnetizationεp = β1p = 1 and
for the specific heatεp = −αp = 0, etc.) We restrict ourselves to quantities withεp > 0.
To calculate the average behaviour ofQ(t) in the random system, we assume that in each
random realization the temperature dependenceQi(t) is the same as in the pure system
in (14) with the appropriate critical temperatureTc(i) of the sample. This relation is then
averaged over the samples:

[Q(t)]av =
∑
ti>t

P (ti)Qi(t) ∼
∑
ti>t

tωi (ti − t)εp ∼ tω+εp . (15)

Thus the critical exponent in the random system,ε, is related to its value in the homogeneous
system as

ε = εp + ω. (16)

This relation is indeed satisfied with all the considered physical quantities in equations (5)
and (8).

To summarize we have considered a generalized MW model and studied the critical
properties in the mean-field approximation. We have determined different critical exponents
and shown that they do not depend on the actual form of the coupling distributions. The
values of the critical exponents in the pure and in the random systems are related and
the only parameter which completely characterizes the random critical properties is theω

exponent of the probability distribution of the critical temperatures. We have seen in (10)
that the average critical temperature corresponds to the maximal critical temperature of the
samples. Therefore above theT av

c critical temperature there are no samples with finite
magnetization and hence there areno Griffiths singularitiesin the MFMW model.

The critical properties of the model are deeply connected to the probability distribution
of the samples critical temperatures in equations (11) and (13). We consider it to be very
probable that these expressions, which were observed numerically, can be obtained by
analytical methods and perhaps also theω exponent in (12) can be determined exactly.
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